JKI: Den Tricks des Feuerbrand-Bakteriums auf der Spur

Der Feuerbranderreger überredet den Apfel, ihm ein Bett aus toten Zellen zu bereiten, von dem er sich ernährt. Forscher des Julius Kühn-Instituts (JKI) weisen jetzt nach, dass ein einziges Protein ausreicht, um den morbiden Vorgang anzustoßen und berichten darüber im Fachmagazin „Molecular Plant Microbe Interaction“.

Todeszellen im Apfelbaum, den Tricks des Feuerbrand-Bakteriums auf der Spur. Bild: GABOT.

Anzeige

Feuerbrand zählt aktuell zu den ökonomisch bedeutensten Krankheiten im Kernobstanbau weltweit. Deutsche Obstanbauer fürchten das Bakterium Erwinia amylovora, das die Krankheit auslöst, denn es lässt sich nur schwer bekämpfen, besonders da eine Behandlung mit Antibiotika verboten ist. Ein Befall zieht einen Rattenschwanz an Maßnahmen, wie Entfernung befallener Baumteile bzw. Rodung der Anlage nach sich. Große Hoffnung liegt daher auf der Züchtung neuer resistenter Apfelsorten. Dazu muss vorher klar sein, wie Wirtsbaum und Schaderreger miteinander interagieren. Genau dies wird am Julius Kühn-Institut (JKI) in Dresden im Rahmen eines DFG-geförderten Projektes untersucht. Die Forscherinnen und Forscher konnten nun nachweisen, dass ein einziges Protein des Bakteriums ausreicht, um Krankheitssymptome beim Apfel auszulösen. Die erstaunliche Wirkung, die dieses eine Protein, losgelöst vom Bakterium, auf den Apfel hat, beschreiben die JKI-Wissenschaftler aus Dresden und Berlin gemeinsam mit ihren Partnern vom US-Department of Agriculture in Kearneysville und der Plant and Food Research Ltd. in Neuseeland in ihrer aktuellen Publikation im Journal Molecular Plant-Microbe Interactions (DOI: 10.1094/MPMI-12-17-0300-R).

Der Hauptakteur im Krankheitsgeschehen trägt den komplizierten Namen AvrRpt2EA und ist ein so genanntes Effektorprotein. „Mit unseren Experimenten konnten wir zeigen, dass AvrRpt2EA eine zentrale Rolle in der Wirt-Pathogen-Beziehung spielt“, berichtet Dr. Susan Schröpfer vom JKI. Im Allgemeinen werden Effektorproteine vom Bakterium gebildet und über ein spezielles Ausscheidungssystem in die Zellen der Pflanze eingeschleust. „Hier manipulieren sie in anfälligen Pflanzen die Zellfunktionen zugunsten des Bakteriums“, beschreibt Schröpfer die Tricks der Bakterien. „Doch wie das bakterielle Effektorprotein des Feuerbrands in der Pflanze genau wirkt, hatten wir bislang nur unzureichend verstanden“, sagt Prof. Dr. Henryk Falchowsky. Der Leiter des JKI-Instituts für Obstzüchtung koordinierte die Zusammenarbeit mit den Partnern in den USA und Neuseeland.

Die Pflanzen einer anfälligen Apfelsorte, in denen das Effektorprotein des Feuerbrandbakteriums aktiviert wurde, bildeten schon nach kurzer Zeit totes Gewebe im Bereich der Triebe und die Blätter wurden braun. Diese Krankheitssymptome treten auch bei einer natürlichen Infektion von anfälligen Apfelsorten auf. „In einem nächsten Schritt haben wir die Antwort der Pflanzen auf das fremde Bakterienprotein studiert“, beschreibt Flachowsky das Vorgehen. Dabei zeigte sich, dass das Effektorprotein eine Kettenreaktion anstößt und zwar die Salicylsäure-abhängige Antwort, die die Ausbildung von totem Gewebe fördert, den so genannten Nekrosen. Das legt die Vermutung nahe, dass der Feuerbranderreger, seinen Wirt, den Apfelbaum so manipuliert, dass dieser ihm „ein Bett“ aus toten Zellen bereitet, von denen er sich dann ernährt.

Einige Wildapfelarten besitzen spezielle Resistenzproteine, mit deren Hilfe sie den Feuerbranderreger erkennen und gerichtet die Abwehrreaktion einleiten. Die Dresdner Wissenschaftler konnten in einem bereits vorangegangenen Projekt zeigen, dass das gleiche Effektorprotein ebenfalls eine wichtige Rolle bei der Ausbildung der Resistenz spielt.

So entsteht aus den Einzelergebnissen Stück für Stück das Gesamtbild zur Wirkungsweise des Effektorproteins im Speziellen und über die manipulative Taktik des Feuerbrandbakteriums im Ganzen. Für die Dresdner Forscher bleiben noch Fragen offen: „Beispielsweise ist noch ungeklärt, wie es dem Bakterium-Effektorprotein in anfälligen Sorten genau gelingt, den Salicylsäure-abhängigen Abwehrweg anzustoßen und welche Wechselwirkungen es mit dem apfeleigenen Resistenzprotein FB_Mr5 in resistenten Apfelwildarten gibt“, sagt Flachowsky mit Blick auf künftige Forschungsprojekte. (Quelle: JKI)

Neuen Kommentar schreiben

Kommentare (0)

Bisher sind keine Kommentare zu diesem Artikel erstellt worden.