Forschung: Wie Zellen auf Eisenmangel reagieren

Ein internationales Team um Prof. Dr. Wolfgang R. Hess und Dr. Jens Georg von der Fakultät für Biologie der Universität Freiburg hat ein RNAMolekül entdeckt, das in Cyanobakterien eine Schlüsselrolle spielt, um den Stoffwechsel an die jeweils verfügbare Menge an Eisen anzupassen.

Wie Zellen auf Eisenmangel reagieren... Bild: GABOT.

Anzeige

Forscher finden in Cyanobakterium ein RNA-Molekül, das für die Anpassung des Stoffwechsels eine wesentliche Rolle spielt

Eisen ist unverzichtbar für die oxygene Photosynthese, mit der Pflanzen, Algen und Cyanobakterien Solarenergie für die Synthese von organischen Stoffen sowie für die Sauerstoffproduktion verwenden. Mithilfe von IsaR1 – für „Iron stress activated RNA 1“ – gelingt es den Cyanobakterien, ihre photosynthetische Aktivität bei Eisenmangel zu reduzieren. Die Forscherinnen und Forscher veröffentlichten die Ergebnisse ihrer Studie im Fachjournal „Current Biology“.

Sauerstoff produzierende photosynthetische Zellen sind auf Eisen angewiesen, befinden sich aber in einem zweifachen Dilemma: Dreiwertiges Eisen (Fe3+) und Sauerstoff neigen dazu, miteinander zu reagieren und eine Art Rost zu bilden, der in einer sauerstoffhaltigen Umgebung nicht löslich ist. Das derart gebundene Eisen ist für den Stoffwechsel nicht mehr verfügbar. Dagegen kann zweiwertiges Eisen (Fe2+ ) mit anderen Molekülen in der Zelle reagieren, was zur Bildung freier Radikale führen kann – Verbindungen, welche die Zelle schädigen können. Daher ist Eisen ein unersetzliches, aber potenziell gefährliches Element, dessen Status und Konzentration ständig unter Kontrolle gehalten werden müssen.

Schon zuvor war bekannt, dass viele Bakterien den Gleichgewichtszustand 2 von Eisen mithilfe des Transkriptionsfaktors Fur kontrollieren. Ist genügend Eisen vorhanden, wird dieses von Fur gebunden, wodurch dieser befähigt wird, das Ablesen bestimmter Gene zu verhindern. Bei Eisenmangel verliert Fur das Eisen wieder, sodass das Bakterium bestimmte Proteine produzieren kann, die zum Beispiel seine Versorgung mit Eisen wieder sicherstellen.

Gleichzeitig muss bei Eisenmangel das Ablesen anderer Gene verhindert werden, um die Produktion besonders eisenhaltiger Proteine, die für das Überleben unter solch ungünstigen Bedingungen nicht zwingend erforderlich sind, zu stoppen. Dies betrifft insbesondere den Apparat für die oxygene Photosynthese, die eisenreichste supramolekulare Struktur in der Zelle. An der Umsetzung der in der DNA enthaltenen Information sind unter anderem regulatorische RNAs beteiligt. Ein solches Molekül ist IsaR1, welches den photosynthetischen Apparat des Cyanobakteriums unter Eisenmangel auf drei Arten beeinflusst: Es verhindert erstens die Herstellung von vielen Proteinen, die normalerweise für die Photosynthese wichtig sind. Zweitens greift es in den biochemischen Reaktionsweg ein, der zur Produktion von Chlorophyll führt; das grüne photosynthetische Pigment wird in geringerer Menge benötigt, wenn Eisen rar wird. Drittens wirkt es der Herstellung von Proteinen für Eisen-Schwefel-Verbindungen, die bei der Photosynthese ebenfalls eine wichtige Rolle spielen, entgegen.

Eine Besonderheit ist zudem, dass IsaR1 aus nur 68 Nukleotiden besteht, wohingegen Gene für regulatorisch wirkende Proteine Tausende dieser Bausteine benötigen. „Die Entdeckung, dass ein so kurzes RNA-Molekül eine so wesentliche Anpassung des Stoffwechsels steuert, der die Photosynthese-Maschinerie aus drei unterschiedlichen Richtungen beeinflusst, war für uns eine große Überraschung“, sagt Hess. Die Ergebnisse ermöglichen Einsichten in eine zuvor unbekannte Anpassungsstrategie photosynthetischer Cyanobakterien und befähigen die Wissenschaftler, wichtige Schlussfolgerungen zur Regulierung photosynthetischer Prozesse zu ziehen – möglicherweise gibt es vergleichbare Mechanismen auch in Algen und Pflanzen. (Uni Freiburg)

Der GABOT-Newsletter

Kommentare (0)

Bisher sind keine Kommentare zu diesem Artikel erstellt worden.